Three-dimensional multi-fluid simulations of Pluto’s magnetosphere: A comparison to 3D hybrid simulations

نویسندگان

  • E. M. Harnett
  • R. M. Winglee
  • P. A. Delamere
چکیده

[1] Results from 3D multi-fluid simulations of the solar wind interaction with Pluto are compared to 3D hybrid simulations of the same interaction. The results from the multi-fluid simulations are similar to the hybrid results in both the overall size of the magnetosphere as well as predicting pick-up of ionospheric ions by the solar wind. The results from the multi-fluid simulations also show how an increase in the mass of the pick-up ion leads to a larger pick-up region and an asymmetric bow shock. When the solar wind speed is doubled, but its dynamic pressure is held constant, the size of the magnetosphere more than doubles and the asymmetry of the bow shock and pick up region are enhanced. This effect is not present in MHD simulations since ion cyclotron effects are neglected. The results illustrate the ability of the multi-fluid technique to capture ion cyclotron effects, like the hybrid technique. Citation: Harnett, E. M., R. M. Winglee, and P. A. Delamere (2005), Three-dimensional multi-fluid simulations of Pluto’s magnetosphere: A comparison to 3D hybrid simulations, Geophys. Res. Lett., 32, L19104, doi:10.1029/2005GL023178.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reconstructing human push recovery reactions using a three dimensional under-actuated bipedal robot

This paper presents the ability of hybrid zero dynamics (HZD) feedback control method to reproduce human like movements for walking push recovery of an under-actuated 3D biped model. The balance recovery controller is implemented on a three-dimensional under-actuated bipedal model subjected to a push disturbance. The biped robot model is considered as a hybrid system with eight degrees of freed...

متن کامل

Three-dimensional modeling of transport phenomena in a planar anode-supported solid oxide fuel cell

In this article three dimensional modeling of a planar solid oxide fuel cell (SOFC) was investigated. The main objective was to attain the optimized cell operation. SOFC operation simulation involves a large number of parameters,   complicated equations, (mostly partial differential equations), and a sophisticated simulation technique; hence, a finite element method (FEM) multiphysics approach ...

متن کامل

A Novel Toolbox for Generating Realistic Biological Cell Geometries for Electromagnetic Microdosimetry

Researchers in bioelectromagnetics often require realistic tissue, cellular and sub-cellular geometry models for their simulations. However, biological shapes are often extremely irregular, while conventional geometrical modeling tools on the market cannot meet the demand for fast and efficient construction of irregular geometries. We have designed a free, user-friendly tool in MATLAB that comb...

متن کامل

Experimental Study and Three-Dimensional Numerical Flow Simulation in a Centrifugal Pump when Handling Viscous Fluids

In this paper the centrifugal pump performances are tested when handling water and viscous oils as Newtonian fluids. Also, this paper shows a numerical simulation of the three-dimensional fluid flow inside a centrifugal pump. For these numerical simulations the SIMPLEC algorithm is used for solving governing equations of incompressible viscous/turbulent flows through the pump. The k-ε turbulenc...

متن کامل

Self-Consistent hot spot tracing particles by kinetic simulations: With the emphasis on Cusp particle entry

One of the most important advantages of particle simulation as compared to fluid simulation is the capacity for working with and tracing particles. In particle simulations, the test particle method is usually used to get some idea of the behavior of plasma or other substances. In this method, first, a small number of particles are injected into the frame of static electromagnetic fields. Then, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005